sábado, 14 de marzo de 2009
Qué frecuencia tiene el síndrome de Glucoproteínas Deficientes en Carbohidratos (CDG) ?
Estas enfermedades (se estima que la frecuencia es de 1/50,000-1/100,000) se caracterizan por una afectación neurológica que puede estar asociada a implicación multivisceral.
Cómo se diagnostica el síndrome de Glucoproteínas Deficientes en Carbohidratos (CDG)
El diagnóstico biológico se basa en la demostración de la glucosilación anormal de las glucoproteínas del suero, la medida de las actividades leucocitarias responsables y la búsqueda de mutaciones en los genes correspondientes. El diagnóstico prenatal el posible para el CDG, una vez se confirma el diagnóstico en el caso índice.
Detectar síndrome CDG
El síndrome de Glucoproteínas Deficientes en Carbohidratos (CDG) son un grupo de enfermedades autosómicas recesivas que afectan a la síntesis de glucoproteínas. Estas enfermedades (se estima que la frecuencia es de 1/50,000-1/100,000) se caracterizan por una afectación neurológica que puede estar asociada a implicación multivisceral. Los síndromes CDG se asocian con diferentes déficits enzimáticos, el más común de los cuales es el déficit de fosfomanomutasa (que corresponde al CDG Ia, que representa el 70% de los síndromes CDG). El retraso psicomotor es el signo más constante. Los otros signos, a menudo presentes con diferentes grados de severidad son: anomalías lipocutáneas (piel de naranja), atrofia olivopontocerebelar, anomalías esqueléticas, pezones invertidos, alteraciones de la coagulación, y citolisis y fibrosis hepática.
¿Qué ocurre en los defectos congénitos de la glicosilación?
Los defectos congénitos de la glicosilación son errores de la síntesis de las glicoproteínas. Pueden ser causados por la deficiencia de diferentes
proteínas (enzimas o transportadores) capaces de transportar y ceder distintos azúcares
en un orden determinado a la cadena de glicano que debe unirse a muchas glicoproteínas
del organismo. Como las glicoproteínas finales tienen muy diversas funciones y localizaciones
dentro de las células, el defecto de síntesis del glicano afectará a muchas proteínas
a la vez y puede llegar a causar una enfermedad
multisistémica, que afecte diferentes órganos y sistemas del cuerpo humano.
proteínas (enzimas o transportadores) capaces de transportar y ceder distintos azúcares
en un orden determinado a la cadena de glicano que debe unirse a muchas glicoproteínas
del organismo. Como las glicoproteínas finales tienen muy diversas funciones y localizaciones
dentro de las células, el defecto de síntesis del glicano afectará a muchas proteínas
a la vez y puede llegar a causar una enfermedad
multisistémica, que afecte diferentes órganos y sistemas del cuerpo humano.
Error congénito del metabolismo: Qué es?
Los errores congénitos del metabolismo, errores metabólicos o enfermedades metabólicas son un conjunto de enfermedades hereditarias que implican alteraciones del metabolismo. La mayoría son debidas a la alteración de un gen que codifica un enzima que catalizan una de los miles de reacciones químicas de la célula. El primer error metabólico congénito fue identificado por Archibald Garrod en 1923[1] se trata de la alcaptonuria, una deficiencia en la enzima homogentisato oxidasa implicado en el metabolismo de la tirosina.
De manera esquemática, los errores metabólicos funcionan de la siguiente manera:
Dada la ruta metabólica
A →enzima1→ B →enzima2→ C →enzima3→ D →enzima4→ E
cualquier disfunción en alguno de los enzimas que catalizan esas reacciones supondrá el bloqueo de la ruta metabólica, la no producción de E y la acumulación en la célula de un metabolito intermediario; como las enzimas están determinadas genéticamente, su disfunción está realmente causada por una alteración del ADN:
A →enzima1→ B →enzima2→ C →X→//
En este caso, la disfunción del enzima 3, que cataliza el paso de C a D, originará la acumulación del metabolito C en la célula, y la no producción de E, lo que puede originar trastornos en los individuos, conocidos genéricamente como errores congénitos del metabolismo que, además, son hereditarios ya que su causa última es una alteración en el ADN.
(Wikipédia)
De manera esquemática, los errores metabólicos funcionan de la siguiente manera:
Dada la ruta metabólica
A →enzima1→ B →enzima2→ C →enzima3→ D →enzima4→ E
cualquier disfunción en alguno de los enzimas que catalizan esas reacciones supondrá el bloqueo de la ruta metabólica, la no producción de E y la acumulación en la célula de un metabolito intermediario; como las enzimas están determinadas genéticamente, su disfunción está realmente causada por una alteración del ADN:
A →enzima1→ B →enzima2→ C →X→//
En este caso, la disfunción del enzima 3, que cataliza el paso de C a D, originará la acumulación del metabolito C en la célula, y la no producción de E, lo que puede originar trastornos en los individuos, conocidos genéricamente como errores congénitos del metabolismo que, además, son hereditarios ya que su causa última es una alteración en el ADN.
(Wikipédia)
Definición de glicoproteínas:
Definición de defectos congénitos de la glicosilación
Son enfermedades hereditarias del metabolismo
de las glicoproteínas.
de las glicoproteínas.
Diagnostic testing
Analysis of serum transferrin glycoforms (also called "carbohydrate-deficient transferrin analysis"). The diagnostic test for CDG-1a is isoelectric focusing (IEF) or other isoform analysis (i.e., performed by capillary electrophoresis, GC/MS, CE-ESI-MS, MALDI-MS) to determine the number of sialylated N-linked oligosaccharide residues linked to serum transferrin.
The different CDG and Clinical Symptoms
CDG-Ia: Mentally and physically handicapped, weak muscle strength, ataxia (difficulties with grip and walking), cross-eyed, impaired liver function, developmental disabilities, inverted nipples, fat pads.
CDG-Ib: No neurological symptoms, serious diarrhea, liver disease, coagulation abnormalities.
CDG-Ic: Symptoms similar to those of CDG-Ia patient, with fewer noticeable neurological symptoms.
CDG-Id/
-Ie: Most severely handicapped, nearly no neurological development, severe epilepsy.
CDG-If:Severely mentally handicapped, impaired vision, dry or flaky skin.
CDG-Ig:Mentally and physically handicapped, cross-eyed, coagulation abnormalities.
CDG-Ih:First case recently diagnosed; little documented.
CDG-Iia:Severely mentally and physically handicapped, coagulation abnormalities, elevated liver values
CDG-Iib:Cramps or convulsions, impaired breathing.
CDG-Iic:Noticeably elevated white blood cell count, frequently severe infections with high fever, significantly small stature, difficulty gaining weight, mid-to-severely mentally handicapped.
CDG-Iid:First case recently diagnosed; little documented.
CDG-X:Loss of red blood cells, occasional damage to the liver, liver and spleen enlarged.
CDG-Ib: No neurological symptoms, serious diarrhea, liver disease, coagulation abnormalities.
CDG-Ic: Symptoms similar to those of CDG-Ia patient, with fewer noticeable neurological symptoms.
CDG-Id/
-Ie: Most severely handicapped, nearly no neurological development, severe epilepsy.
CDG-If:Severely mentally handicapped, impaired vision, dry or flaky skin.
CDG-Ig:Mentally and physically handicapped, cross-eyed, coagulation abnormalities.
CDG-Ih:First case recently diagnosed; little documented.
CDG-Iia:Severely mentally and physically handicapped, coagulation abnormalities, elevated liver values
CDG-Iib:Cramps or convulsions, impaired breathing.
CDG-Iic:Noticeably elevated white blood cell count, frequently severe infections with high fever, significantly small stature, difficulty gaining weight, mid-to-severely mentally handicapped.
CDG-Iid:First case recently diagnosed; little documented.
CDG-X:Loss of red blood cells, occasional damage to the liver, liver and spleen enlarged.
Genetic background:
CDG-1a is inherited in an autosomal recessive manner. At conception, the theoretical risks to sibs of an affected individual are a 25% risk of being affected, a 50% risk of being an asymptomatic carrier, and a 25% risk of being unaffected and not a carrier; however, based on outcomes of at-risk pregnancies, the risk of having an affected child is closer to 1/3 rather than the expected 1/4.
Etiology:
CDG1A is caused by mutations (changes) in the PMM2-gene that result in an
impaired ability of the cells to synthesize or process glycoproteins. The gene is located
on the short arm (p) of chromosome 16 (chromosome 16p13). The disease is inherited
autosomal recessively.
impaired ability of the cells to synthesize or process glycoproteins. The gene is located
on the short arm (p) of chromosome 16 (chromosome 16p13). The disease is inherited
autosomal recessively.
CDG definition
Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. These glycoconjugates play critical roles in metabolism, cell recognition and adhesion, cell migration, protease resistance, host defense, and antigenicity, among others
CDG-Ia is the most common of the 21 known types defined by defects in different steps of the synthetic pathway.
Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. These glycoconjugates play critical roles in metabolism, cell recognition and adhesion, cell migration, protease resistance, host defense, and antigenicity, among others.
CDG-Ia is the most common of the 21 known types defined by defects in different steps of the synthetic pathway.
Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. These glycoconjugates play critical roles in metabolism, cell recognition and adhesion, cell migration, protease resistance, host defense, and antigenicity, among others.
miércoles, 4 de marzo de 2009
Artículo en yahoo sobre el día de las enfermedades raras
Enfermedades Raras. ¿Padece usted alguna y no lo sabe?El próximo 28 de febrero se celebra el primer día mundial de las enfermedades raras (ER). Según la Federación Española de Enfermedades Raras (FEDER) el 20% de los afectados por enfermedades raras tardan 10 años en ser diagnosticados. Como su nombre bien lo indica, son enfermedades poco conocidas por la mayoría. Este desconocimiento estriba en su baja incidencia (1 de cada 2.000 ciudadanos) pero eso no significa que sean menos importantes, ya que muchas de estas enfermedades resultan mortales.
El 6 al 8% de las personas en el mundo están afectados por ER, y en España ya son 3.000,000 de afectados por ER, mientras que en Europa son 27 millones y 25 en Estados Unidos.
Las principales enfermedades por su incidencia, al menos en España son: los diferentes tipos de anemia (talasemia, células falciformes), 10.000 personas; esclerosis lateral amiotrófica, 6.000; fibrosis quística, 5.000; etcétera.
El problema con estas enfermedades es que la gran mayoría (más del 65%) son invalidantes y comprometen la vida. Además comienzan en edad precoz, antes de los tres años de edad.
FEDER intenta hacer una labor de consciencia sobre la población en general. Recomendamos la visita a su página (www.enfermedades-raras.org) porque contiene información detallada de estas enfermedades cuyos principales problemas son: la falta de acceso al diagnóstico correcto, la falta de información, la falta de conocimiento científico, los problemas de integración social, escolar y laboral, la falta de apropiada calidad del cuidado de la salud, el alto coste de los pocos medicamentos existentes, y la desigualdad en la accesibilidad al tratamiento y el cuidado.
Por Carl Boss
Sacado de : http://es.noticias.yahoo.com/blog/salud_consumo/articulo/1108/)
El 6 al 8% de las personas en el mundo están afectados por ER, y en España ya son 3.000,000 de afectados por ER, mientras que en Europa son 27 millones y 25 en Estados Unidos.
Las principales enfermedades por su incidencia, al menos en España son: los diferentes tipos de anemia (talasemia, células falciformes), 10.000 personas; esclerosis lateral amiotrófica, 6.000; fibrosis quística, 5.000; etcétera.
El problema con estas enfermedades es que la gran mayoría (más del 65%) son invalidantes y comprometen la vida. Además comienzan en edad precoz, antes de los tres años de edad.
FEDER intenta hacer una labor de consciencia sobre la población en general. Recomendamos la visita a su página (www.enfermedades-raras.org) porque contiene información detallada de estas enfermedades cuyos principales problemas son: la falta de acceso al diagnóstico correcto, la falta de información, la falta de conocimiento científico, los problemas de integración social, escolar y laboral, la falta de apropiada calidad del cuidado de la salud, el alto coste de los pocos medicamentos existentes, y la desigualdad en la accesibilidad al tratamiento y el cuidado.
Por Carl Boss
Sacado de : http://es.noticias.yahoo.com/blog/salud_consumo/articulo/1108/)
domingo, 22 de febrero de 2009
WHAT IS GLYCOSILATION?
Glycosylation is the enzymatic process that links saccharides (also called, carbohydrates or sugars) to produce glycans (see definition), either free or attached to proteins and lipids.
This enzymatic process produces one of four fundamental components of all cells (along with nucleic acids, proteins, and lipids) and also provides a co-translational and post-translational modification mechanism that modulates the structure and function of membrane and secreted proteins.
The majority of proteins synthesized in the rough ER (check more about ER and rough ER in the definition part) undergo glycosylation.
It is an enzyme-directed site-specific process, as opposed to the non-enzymatic chemical reaction of glycation.
Glycosylation is also present in the cytoplasm and nucleus as the O-GlcNAc modification.
Six classes of glycans are produced:
N-linked glycans attached to the amide nitrogen of asparagine (Asn) side chains,
O-linked glycans attached to the hydroxy oxygen of serine (SER) and threonine (Thr ) side chains;
glycosaminoglycans attached to the hydroxy oxygen of serine;
glycolipids in which the glycans are attached to ceramide,
hyaluronan which is unattached to either protein or lipid,
and GPI anchors which link proteins to lipids through glycan linkages.
Proteins that traverse the secretory pathway of eukaryotic cells can be covalently modified with carbohydrates, which are important for their stability and folding, and which mediate diverse recognition events in growth and development.
Defects in the attachment of carbohydrate to protein give rise to mental and psychomotor retardation, dysmorphism, and blood coagulation defects.
These symptoms, referred to as CDG (for congenital disorders of glycosylation, or, until recently, for carbohydrate-deficient glycoprotein syndrome), are caused by mutations that affect the pathway for N-glycosylation.
CDGs are caused by N-glycosylation defects stemming from abnormalities in N-glycosylation site occupancy (CDG type-I) or N-glycan trimming and elongation (CDG-type II).
The abundant plasma protein transferrin, which is normally fully glycosylated, can be used as an indicator to detect protein underglycosylation.
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells.
The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc3Man9GlcNAc2 oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains.
In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway.
The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG.
This enzymatic process produces one of four fundamental components of all cells (along with nucleic acids, proteins, and lipids) and also provides a co-translational and post-translational modification mechanism that modulates the structure and function of membrane and secreted proteins.
The majority of proteins synthesized in the rough ER (check more about ER and rough ER in the definition part) undergo glycosylation.
It is an enzyme-directed site-specific process, as opposed to the non-enzymatic chemical reaction of glycation.
Glycosylation is also present in the cytoplasm and nucleus as the O-GlcNAc modification.
Six classes of glycans are produced:
N-linked glycans attached to the amide nitrogen of asparagine (Asn) side chains,
O-linked glycans attached to the hydroxy oxygen of serine (SER) and threonine (Thr ) side chains;
glycosaminoglycans attached to the hydroxy oxygen of serine;
glycolipids in which the glycans are attached to ceramide,
hyaluronan which is unattached to either protein or lipid,
and GPI anchors which link proteins to lipids through glycan linkages.
Proteins that traverse the secretory pathway of eukaryotic cells can be covalently modified with carbohydrates, which are important for their stability and folding, and which mediate diverse recognition events in growth and development.
Defects in the attachment of carbohydrate to protein give rise to mental and psychomotor retardation, dysmorphism, and blood coagulation defects.
These symptoms, referred to as CDG (for congenital disorders of glycosylation, or, until recently, for carbohydrate-deficient glycoprotein syndrome), are caused by mutations that affect the pathway for N-glycosylation.
CDGs are caused by N-glycosylation defects stemming from abnormalities in N-glycosylation site occupancy (CDG type-I) or N-glycan trimming and elongation (CDG-type II).
The abundant plasma protein transferrin, which is normally fully glycosylated, can be used as an indicator to detect protein underglycosylation.
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells.
The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc3Man9GlcNAc2 oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains.
In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway.
The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG.
WHAT IS Congenital disorders of glycosylation-Ia?
Congenital disorders of glycosylation-Ia are the most frequent type of congenital disorders of glycosylation. This condition affects the nervous system as well as other organs. The estimated incidence of congenital disorders of glycosylation-Ia is higher than the number of identified cases, therefore underdiagnosis of this heterogeneous disorder is probable. Neurologic and biologic signs are hallmarks for the identification of patients with congenital disorders of glycosylation-Ia.
CDG-Ia is the most common type of CDG, with more than 600 cases identified worldwide. The patients have moderate to severe psychomotor retardation, hypotonia, dysmorphic features, failure to thrive, liver dysfunction, coagulopathy, abnormal endocrine functions, and a pronounced susceptibility to infection. Scores of mutations have been found in phosphomannomutase 2 (PMM2), the defective gene in CDG-Ia. PMM2 encodes an enzyme that catalyzes the conversion of Man-6-P to Man-1-P, which is a precursor required for the synthesis of GDP-mannose (GDP-Man) and dolichol-P-mannose (Dol-P-Man). Both donors are substrates for the mannosyltransferases involved in the synthesis of Glc3Man9GlcNAc2-PP-Dol and their levels are decreased in CDG-Ia patients. Patients have hypomorphic alleles and complete loss of activity is lethal. In fact, mouse embryos lacking Pmm2 die 2–4 days after fertilization, whereas those with homozygous hypomorphic alleles survive. There are currently no therapeutic options for CDG-Ia patients. In vitro studies suggested that supplements of mannose might improve glycosylation, but mannose therapy for CDG-Ia patients is ineffective.
(From: Essentials of glycobiology , chapter 41: Genetic Disorders of Glycosylation. Authors: Hudson H. Freeze and Harry Schachter)
CDG-Ia is the most common type of CDG, with more than 600 cases identified worldwide. The patients have moderate to severe psychomotor retardation, hypotonia, dysmorphic features, failure to thrive, liver dysfunction, coagulopathy, abnormal endocrine functions, and a pronounced susceptibility to infection. Scores of mutations have been found in phosphomannomutase 2 (PMM2), the defective gene in CDG-Ia. PMM2 encodes an enzyme that catalyzes the conversion of Man-6-P to Man-1-P, which is a precursor required for the synthesis of GDP-mannose (GDP-Man) and dolichol-P-mannose (Dol-P-Man). Both donors are substrates for the mannosyltransferases involved in the synthesis of Glc3Man9GlcNAc2-PP-Dol and their levels are decreased in CDG-Ia patients. Patients have hypomorphic alleles and complete loss of activity is lethal. In fact, mouse embryos lacking Pmm2 die 2–4 days after fertilization, whereas those with homozygous hypomorphic alleles survive. There are currently no therapeutic options for CDG-Ia patients. In vitro studies suggested that supplements of mannose might improve glycosylation, but mannose therapy for CDG-Ia patients is ineffective.
(From: Essentials of glycobiology , chapter 41: Genetic Disorders of Glycosylation. Authors: Hudson H. Freeze and Harry Schachter)
domingo, 25 de enero de 2009
LINKS IMPORTANTE:
Síndrome CDG em Espanha
http://cdgsindrome.iespana.es/
The CDG family network:
http://www.cdgs.com/
Síndrome CDG na Alemanha:
http://www.cdg-syndrom.de
Red de enfermedades metabólicas hereditarias:
http://www.cbm.uam.es/redemeth/lineasdeactuacion/enfermedades/actuaciones.asp
(nesta páginas encontramos informaçao sobre os médicos e investigadores relacionados com o diagnóstico e investigaçao da doença)
Documento que explica a doença:
http://pkuatm.org/wp-content/uploads/2008/11/defectes_cong_glicosilacio_cas.pdf
http://cdgsindrome.iespana.es/
The CDG family network:
http://www.cdgs.com/
Síndrome CDG na Alemanha:
http://www.cdg-syndrom.de
Red de enfermedades metabólicas hereditarias:
http://www.cbm.uam.es/redemeth/lineasdeactuacion/enfermedades/actuaciones.asp
(nesta páginas encontramos informaçao sobre os médicos e investigadores relacionados com o diagnóstico e investigaçao da doença)
Documento que explica a doença:
http://pkuatm.org/wp-content/uploads/2008/11/defectes_cong_glicosilacio_cas.pdf
Etiquetas:
DESÓRDENES CONGÉNITOS DE LA GLICOSILACIÓN,
DOENÇA METABÓLICA,
enfermedad metabólica,
MALADIE METABOLIQUE,
síndrome del CDG,
SYNDROME CDG 1 A
sábado, 24 de enero de 2009
Links que podem ajudar:
http://www.portaldasaude.pt/portal/conteudos/enciclopedia+da+saude/doencas/doencas+raras/doencasraras.htm
http://www.orphanet.pt/
http://www.eurordis.org/secteur.php3?id_rubrique=353
http://www.rarissimas.pt/home.php
www.pubmed.com
http://www.enfermedadesraras.es/
http://www.orphanet.pt/
http://www.eurordis.org/secteur.php3?id_rubrique=353
http://www.rarissimas.pt/home.php
www.pubmed.com
http://www.enfermedadesraras.es/
O que é uma doença genética rara?
O que é uma doença genética rara?
As doenças raras – também designadas como doenças órfãs – são aquelas que afectam um pequeno número de pessoas, por comparação com a população em geral. Ocorrem com pouca frequência ou raramente. Existem ainda variantes raras de doenças frequentes. Na Europa, uma doença é considerada rara quando afecta uma em duas mil pessoas.
Quantas doenças raras existem?
São conhecidas cerca de sete mil doenças raras, mas estima-se que existam mais e que afectem entre seis a oito por cento da população – entre 24 e 36 milhões de pessoas – na União Europeia. Esse número está em crescimento, uma vez que são reportadas, na literatura média, cinco novas doenças por semana.
Como surgem as doenças raras?
A maioria das doenças raras – 80 por cento – tem subjacente uma alteração genética. Existem ainda doenças raras de origem infecciosa (bacteriana ou viral), alérgica e profissional. Existem também doenças raras causadas por envenenamento.
As doenças raras – também designadas como doenças órfãs – são aquelas que afectam um pequeno número de pessoas, por comparação com a população em geral. Ocorrem com pouca frequência ou raramente. Existem ainda variantes raras de doenças frequentes. Na Europa, uma doença é considerada rara quando afecta uma em duas mil pessoas.
Quantas doenças raras existem?
São conhecidas cerca de sete mil doenças raras, mas estima-se que existam mais e que afectem entre seis a oito por cento da população – entre 24 e 36 milhões de pessoas – na União Europeia. Esse número está em crescimento, uma vez que são reportadas, na literatura média, cinco novas doenças por semana.
Como surgem as doenças raras?
A maioria das doenças raras – 80 por cento – tem subjacente uma alteração genética. Existem ainda doenças raras de origem infecciosa (bacteriana ou viral), alérgica e profissional. Existem também doenças raras causadas por envenenamento.
Os objectivos deste blog:
Com este espaço, pretendo retratar as dificultades que enfrentamos no nosso dia-a –dia,
e principalmente o que é o Síndrome CDG Ia.
Este blog foi criado com a intenção de partilhar a nossa história com outros pais e familiares de pacientes com o síndrome CDG Ia.
A minha irmã foi o primeiro caso diagnosticado em Portugal , e como é óbvio enfrentámos muitas dificuldades. Não sabiamos o que era esta doença, que consequências teria, nem que cuidados médicos e terapêuticos deveria de ter.
Hoje em dia, sabemos um pouco mais sobre o que é esta doença, mas continuamos com a sensação de estar sozinhos.! Como tal, este blog foi criado como resultado da necessidade de:
-Divulgar e sensibilizar sobre a doença;
-Contactar com outros pacientes e familiares;
-Reinvidicar mais apoio ao Estado, à Sociedade e aos serviços médicos hospitalários;
-Lutar por um atendimento mais personalizado e integrado que dê resposta às necessidades dos doentes;
-Contactar com associações nacionais e estrangeiras;
-Divulgar as últimas descobertas científicas e médicas sobre a doença;
-Divulgar possíveis encontros entre familiares.
e principalmente o que é o Síndrome CDG Ia.
Este blog foi criado com a intenção de partilhar a nossa história com outros pais e familiares de pacientes com o síndrome CDG Ia.
A minha irmã foi o primeiro caso diagnosticado em Portugal , e como é óbvio enfrentámos muitas dificuldades. Não sabiamos o que era esta doença, que consequências teria, nem que cuidados médicos e terapêuticos deveria de ter.
Hoje em dia, sabemos um pouco mais sobre o que é esta doença, mas continuamos com a sensação de estar sozinhos.! Como tal, este blog foi criado como resultado da necessidade de:
-Divulgar e sensibilizar sobre a doença;
-Contactar com outros pacientes e familiares;
-Reinvidicar mais apoio ao Estado, à Sociedade e aos serviços médicos hospitalários;
-Lutar por um atendimento mais personalizado e integrado que dê resposta às necessidades dos doentes;
-Contactar com associações nacionais e estrangeiras;
-Divulgar as últimas descobertas científicas e médicas sobre a doença;
-Divulgar possíveis encontros entre familiares.
Suscribirse a:
Entradas (Atom)